Boris Chichkov | Biochemistry | Best Research Article Award

Prof. Dr. Boris Chichkov | Biochemistry | Best Research Article Award

Professor of Physics at Leibniz Universität Hannover, Germany

Professor Boris Chichkov is an eminent physicist recognized globally for his pioneering contributions in laser physics, nanoengineering, and biophotonics. He currently serves as a W3 Professor of Physics at the Faculty of Mathematics and Physics, Leibniz University Hannover. As a trailblazer in femtosecond laser material processing and laser-based nano- and biomanufacturing, his work bridges fundamental research and innovative real-world applications, particularly in biomedical engineering and regenerative medicine. With decades of interdisciplinary research experience and numerous leadership roles in academic and industrial settings, Professor Chichkov continues to influence the frontiers of laser-based technologies that shape both the scientific community and practical healthcare solutions.

profile

orcid

scopus

Education

Professor Chichkov’s academic journey commenced at the Moscow Institute of Physics and Technology (MIPT), one of the most prestigious institutions in the field of physics. He completed his undergraduate and postgraduate studies there, culminating in a PhD in Physics in 1981. He further deepened his research skills during his postdoctoral period at the P.N. Lebedev Institute of Physics in Moscow. His later academic qualification, the Habilitation in Physics (Dr. rer. nat. habil.), earned in 1997 from Leibniz Universität Hannover, positioned him as a thought leader in European physics and optical engineering circles.

Experience

Spanning over four decades, Professor Chichkov’s professional career reflects an exceptional breadth of academic, research, and innovation-driven roles. He began as a scientific researcher at the P.N. Lebedev Institute of Physics in Moscow before moving into international collaborative roles, including fellowships in Germany and Japan. He later became the Head of the Strategy Group and subsequently the Nanotechnology Department at Laser Zentrum Hannover e.V., where he directed numerous groundbreaking projects. Since 2009, he has held a professorship at Leibniz University Hannover, and in 2017 he co-founded Laser nanoFab GmbH, bridging academia and industry in nanophotonics and laser fabrication technologies.

Research Interests

Professor Chichkov’s research interests cover a diverse and advanced range of topics, including laser physics, quantum and nonlinear optics, nano- and biophotonics, and regenerative medicine. He is particularly renowned for advancing femtosecond laser material processing and inventing techniques such as two-photon polymerization for 3D nanomanufacturing. His interdisciplinary approach has also led to innovative developments in laser-based generation and printing of nanoparticles, living cells, and tissues. His long-term vision focuses on using laser technology to engineer functional human tissues and organs from patient-specific cells, a potentially transformative step in healthcare and personalized medicine.

Awards

Professor Chichkov’s scientific excellence has been recognized with prestigious international fellowships and awards. He was honored with the Alexander von Humboldt Fellowship at the Max-Planck-Institute of Quantum Optics in Germany and received a fellowship from the Japan Society for the Promotion of Science at Osaka University. Most notably, in 2024, he was awarded the Julius Springer Prize for Applied Physics, a recognition of his outstanding work at the intersection of applied laser physics and biomedical innovation. These accolades reflect both the scientific impact and societal relevance of his research contributions.

Selected Publications

Chichkov, B.N., et al. (1996). “Femtosecond, picosecond and nanosecond laser ablation of solids.” Applied Physics A, cited by over 2,000 articles.

Malinauskas, M., et al. (2013). “Ultrafast laser processing of materials: from science to industry.” Light: Science & Applications, cited by over 1,300 articles.

Hopp, B., et al. (2010). “Laser printing of cells and tissue constructs.” Biofabrication, cited by over 800 articles.

Koch, L., et al. (2012). “Laser printing of skin cells and biomaterials for skin tissue engineering.” Acta Biomaterialia, cited by over 500 articles.

Doraiswamy, A., et al. (2006). “Two photon polymerization of nanostructures.” Journal of Applied Physics, cited by over 900 articles.

Gattass, R.R., Chichkov, B.N. (2008). “Femtosecond laser micromachining in transparent materials.” Nature Photonics, cited by over 1,000 articles.

Chichkov, B.N., et al. (2015). “Laser-generated nanoparticles for biomedical applications.” Advanced Drug Delivery Reviews, cited by over 400 articles.

Conclusion

Prof. Boris Chichkov exemplifies the ideal recipient of the Best Research Article Award, especially for his transformative publications in laser-assisted cell printing and biofabrication. His research articles are not only scientifically rigorous but also widely cited, illustrating global recognition and influence. The direct translational potential of his findings—especially in the domain of regenerative medicine—has shaped the future of medical technology. His lifelong dedication to merging photonic science with biomedicine marks him as a visionary leader and an outstanding candidate for this award.

Dilek Gungor | Biochemistry | Best Researcher Award

Mr. Dilek Gungor | Biochemistry | Best Researcher Award

Postdoctoral Researcher at Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey

Dilek Güngör is a researcher in forensic biochemistry and nanomedicine with a strong academic background and multidisciplinary experience. Her work focuses on innovative drug delivery systems, particularly in combating antimicrobial resistance. Through research roles at both national institutions and internationally renowned universities, she has established a profile marked by scientific curiosity, methodical rigor, and impactful contributions to pharmaceutical and forensic sciences.

profile

orcid

Education

Dilek completed her Ph.D. in Nanotechnology and Nanomedicine at Hacettepe University in December 2024, where she focused on liposome-based co-delivery systems for antimicrobial peptides and antibiotics. Her doctoral studies included an international research stint at Rutgers University in the U.S., supported by TÜBİTAK 2214/A. She earned her M.Sc. in Biochemistry (Pharmacy) from Gazi University in February 2018 and her B.Sc. in Biochemistry with a specialization in Biotechnology from Ege University in June 2009. Her academic formation reflects a consistent commitment to molecular and pharmaceutical sciences, with thesis work investigating gene expressions in cancer and novel therapeutic delivery platforms.

Experience

Dilek has served as a Research Assistant at the Turkish National Police Academy across several departments since 2014, currently contributing to the Forensic Science Department. Between 2022 and 2023, she was a Visiting Scholar at Rutgers University’s Center for Dermal Research, deepening her expertise in transdermal drug delivery systems. Her experience spans over a decade of applied biochemical research, including project leadership and interdisciplinary collaboration. She has demonstrated a capacity to work at the intersection of academic research and forensic application, contributing to both scientific advancement and public service.

Research Interest

Her research interests include nanomedicine, forensic toxicology, and dermal drug delivery systems. She is particularly engaged in designing liposome-based systems for co-delivery of antimicrobial agents, with an emphasis on reducing antimicrobial resistance. Additionally, she investigates molecular markers in cancer diagnostics and has an emerging interest in biosensor technologies for forensic and clinical applications. Her research is characterized by translational intent, targeting real-world medical and forensic challenges through molecular innovation.

Awards

Dilek has been recognized with a TÜBİTAK 2214-A International Research Fellowship, allowing her to pursue advanced pharmaceutical research abroad. Earlier in her career, she contributed to a TÜBİTAK 2209-A project on biosensor development during her undergraduate studies. These fellowships underscore both her scientific promise and her capacity to lead cutting-edge research in nationally and internationally competitive contexts.

Publications

Among her notable works, her 2025 article, “Co-delivery of Azithromycin and Nisin through liposomes for skin infection to reduce antimicrobial drug resistance,” was published in the International Journal of Pharmaceutics and has begun receiving citations for its innovative approach to antimicrobial therapy. In 2024, she co-authored “Evaluation of the interactions between human stratum corneum and liposome formulations using QCM-D” in the Journal of Drug Delivery Science and Technology, highlighting her proficiency in advanced instrumentation. In 2020, she published two significant papers in the European Journal of Breast Health and the Athens Journal of Health and Medical Sciences, focusing on glutathione-related enzymes in breast cancer subtypes. Her earlier publication, “Sentetik uyuşturucular: Amfetamin örneği,” appeared in the Güvenlik Çalışmaları Dergisi in 2018 and reflects her forensic research contributions. Her most cited article is the 2025 IJPharm paper on liposomal drug delivery for antimicrobial resistance, which is increasingly referenced in pharmaceutical and clinical research circles.

Conclusion

Dr. Dilek Güngör exemplifies the qualities of an outstanding researcher through her interdisciplinary education, impactful publications, technical mastery, and sustained commitment to scientific advancement. Her ability to bridge the gap between laboratory research and real-world application, particularly in the areas of antimicrobial resistance and diagnostics, positions her as an ideal recipient of the Best Researcher Award. Her trajectory reflects both depth and breadth of expertise, making her a valuable asset to the scientific community at large